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Abstract In previous works (Gabarro-Arpa, J. Math. Chem. 42 (2006) 691–706) a
procedure was described for dividing the 3 × N -dimensional conformational space of
a molecular system into a number of discrete cells, this partition allowed the building
of a combinatorial structure from data sampled in molecular dynamics trajectories:
the graph of cells or G, that encodes the set of cells in conformational space that are
visited by the system in its thermal wandering. Here we outline a set of procedures for
extracting useful information from this structure: (1st) interesting regions in the volume
occupied by the system in conformational space can be bounded by a polyhedral cone,
whose faces are determined empirically from a set of relations between the coordinates
of the molecule, (2nd) it is also shown that this cone can be decomposed into a set of
smaller cones, (3rd) the set of cells in a cone can be encoded by a simple combinatorial
sequence.

Keywords Molecular conformational space · Hyperplane arrangement ·
Face lattice · Molecular dynamics

1 Introduction

The aim of this series of papers [1–4] is to build a set of mathematical tools for studying
the energy landscape of proteins [5–7], and the present paper is a step further towards
this goal.

The energy surface of proteins is the essential tool for understanding the
physico-chemistry of basic biological processes like catalysis [7]. It is also a complex
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multi-dimensional structure that can only be built from the knowledge of the complete
dynamical history of the molecule, which is currently out of reach for conventional
molecular-dynamics simulations (thereafter referred as MDS) [7]. One reason is that
in an MDS trajectory the position of every atom in the molecule is calculated with an
accuracy of a hundredth of angström, which quickly overhelms even the most power-
ful computers. The approach taken here consists in encoding the small movements of
a molecular system by means of some combinatorial structure, that allows to generate
the set of realizable combinations of these movements.

Within this approach, the 3D-structures of protein molecules are encoded into
binary objects called dominance partition sequences (DPS) [1–4], these are the gener-
alization of a combinatorial structure known as noncrossing partition sequences [8].
In this context the basic structure for studying the molecular dynamics is the set of
3D-conformations that have the same DPS, these form a connected region in mole-
cular conformational space1 (in what follows abridged to CS) called cell, thus DPSs
generate a partition of CS into disjoint cells. Partitions are a useful tool for studying
multi-dimensional spaces, in our case they systematically span a much wider volume
range than the set of points along a random trajectory curve generated by a MDS, they
have also been used in many other contexts [5,6,9].

The aim of the preceding papers [1–4] was to construct a graph whose nodes are
the cells visited by the molecular system in its thermal wandering, two important
properties of partition sequences make this construction possible:

1. DPSs are hierarchical structures: partition sequences encoding different sets of
cells can be merged into a new partition sequence encoding the union set, and the
process can be repeated with the new sets of cells, thus creating a hierarchy. The
importance of this property is that climbing the hierarchy ladder the number of
cells increases exponentially while the sequence length increases only linearly.
This compact coding makes possible the construction of a graph representing huge
regions of CS whose size does not exceed the memory of a workstation computer,
while keeping at the same time the essential information about the molecular
structures.

2. DPSs are modular structures: partition sequences can be decomposed into sub-
sequences that are embedded in different conformational subspaces. This allows
to define a composition law: if two partition sequences from two different sub-
spaces share the same sequence for the intersection subspace, then joining both
sequences gives a realizable sequence [4].2

The first property tells us that the graph can be constructed, the second suggests how to
build it: a molecular structure can be decomposed into sets of four atoms, its smallest
3D components, by composing the graphs of these one can build the graph of the
molecule.

Atoms in MDSs are represented as pointlike structures surrounded by a force field
[10,11], the convex envelope of a set of 4 points in 3D-space is an irregular polytope

1 For an N -atom molecule it is a 3× N -dimensional space where each point corresponds to a 3D molecular
conformation.
2 That corresponds to an existing set of cells.
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called a 4-simplex or simplex.3 The conformational space of these sets is relatively
small with 13,824 cells, of these only a fraction is visited by the system. With a CS
so small it can be plausibly assumed that the accessible cells are all visited during a
MDS run.

The method for building the graph that was proposed in [2] consists in

1. Establishing a morphological classification of simplexes, where each class is
defined by a set of geometrical constraints.

2. The geometrical constraints that define a class allow to calculate the set of acces-
sible cells in a simplex CS [4], thus to each class we can associate a graph where
the nodes are the cells from this set with edges towards adjacent cells.

3. On the other hand computer simulations of protein dynamics show [2,4] that in
a protein structure the majority of simplexes evolve within a reduced number of
morphologies. For each 4-atom set in the molecule the graph of its CS is built by
merging the graphs of the visited simplex morphologies.

4. The CS graph of the molecule, that was called the graph of cells or G in [4], can
be built by composing the CS graphs of the different simplexes.

The graph of cells allows to enumerate exactly the set of visited cells in conformational
space, but since the cells are encoded in a compact form unwrapping them completely
is probably algorithmically hopeless. Instead here we propose the construction of
more manageable coarse-grained encodings that, using the information from G, can be
recursively decomposed into progressively fine-grained ones. This subject is developed
in the next five sections:

• Section 2 is a graph of cells oriented description of the basic mathematical frame-
work.

• Section 3 is about the basic mathematical properties of G.
• Section 4 describes how to determine, from empirical data, a conical boundary for

the region occupied by the system in CS.
• Section 5 shows how to decompose this cone boundary into a set of smaller cones.
• Section 6 is devoted to describing a combinatorial sequence that encodes the con-

ical boundary in its most compact form.

2 The basic construction

It was shown [1] that the conformational space of a molecule of N + 1 atoms R
3×N 4

could be described to a fair degree of accuracy by means of the partition generated
by a set of hyperplanes passing through the origin that form a Coxeter reflection
arrangement5 denominated AN [8,12], moreover the reflections form a symmetry
group that is isomorphic to the symmetric group.

In our description of CS we have three independent arrangements one for each
coordinate (x, y, z), i.e. A3×N = AN × AN × AN , that generate three partitions of

3 In what follows this denomination will be used to designate ordered sets of 4-atoms/points.
4 N + 1 is because the translation symmetry makes one dimension spurious [1,4].
5 So called because a reflexion through one of the hyperplanes leaves the arrangement unchanged.

123



J Math Chem (2008) 44:872–883 875

R
3×N , each dividing R

N into a hierarchical set of regions shaped as polyhedral cones
denominated cells. The hyperplanes in our partition are defined as

Hi j : xi − x j = 0, 1 ≤ i < j ≤ N + 1 (1)

each Hi j divides R
N into three regions:

xi < x j , xi = x j and xi > x j (2)

in the first case we say that x j dominates xi , in the second case neither xi nor x j

dominates, in the last case xi dominates x j . As cells are bounded by the hyperplanes
(1) a consequence of (2) is that the points inside a given cell (in x , y or z) have the
following property:

xi1 ≤ xi2 ≤ xi3 ≤ · · · ≤ xiN−2 ≤ xiN−1 ≤ xiN (3)

where the sequence (i1, i2, i3, . . . iN−2, iN−1, iN ) is a permutation of the set ZN+1 =
(1, 2, 3, . . . N , N + 1), reflecting a point through Hi j is equivalent to permute the
coordinates i and j [8]. Thus a cell where a strict “less than” relation holds for every
pair of coordinates in (3) is encoded by the dominance sequence

(i1)(i2)(i3) . . . (iN−2)(iN−1)(iN ) (4a)

while for a cell where xiα = xiα+1 = · · · = xiα+r , for r + 1 consecutive indices
(iα, iα+1, . . . iα+r ) in (3) will be encoded by the dominance sequence

(i1)(i2)(i3) . . . (iαiα+1 . . . iα+r ) . . . (iN−1)(iN )(iN+1) (4b)

the first (4a) represents an N -dimensional cell while (4b) is a (N − r)-dimensional
cell because it corresponds to the intersection of the hyperplanes Hi j with i, j ∈
(iαiα+1 . . . iα+r ).

Definition 1 The position of a coordinate xc
i in a cell of dimension N is the position

of the index i in the dominance sequence of c.

An alternative encoding of cells is by means of an N × N antisymmetric sign matrix
Sc, where c stands for x , y or z. Let 1 ≤ i < j ≤ N + 1, then for an arbitrary point x
the matrix elements Sc for the c coordinates are defined:

Sc
i j = − if xc

i < xc
j

Sc
i j = 0 if xc

i = xc
j (5)

Sc
i j = + if xc

i > xc
j

As it was explained in [1,4] a direct consequence of (3) is that Sc can be interpreted
as the incidence matrix of a digraph with no directed cycles, and the cell encodings
(3) and (5) can be readily interconverted into one another

123



876 J Math Chem (2008) 44:872–883

Lemma 1 Contiguous cells in space have different dimensionalities.

Crossing to a contiguous cell implies going between two regions in (2), so one
element Sc

i j in (5) changes its value, and this change can never be between + and −
because this would mean crossing Hc

i j avoiding the region ci = c j .

Definition 2 A contiguous set are all the n-dimensional cells contiguous to a (n −1)-
dimensional separator cell.

This allows to build a hierarchical structure: the cell lattice poset, that results from
ordering contiguous cells by dimensionality [1,13].

Consider two arbitrary subpartitions Ada
a and Adb

b of AN , corresponding to the sets
of indices χa = (ia1, ia2 , . . . iada+1) ⊂ Zda+1 and χb = (ib1, ib2 , . . . ibdb+1) ⊂ Zdb+1,
respectively, and let χa∩b = χa ∩ χb be the set of indices that are common to both
partitions.

Definition 3 Two cells ζa ∈ Ada
a and ζb ∈ Adb

b with sign matrices Sa and Sb, respec-
tively, are said to be compatible if Sa

i j = Sb
i j ∀ i, j ∈ χa∩b.

Lemma 2 The cell ζa ∈ Ada
a is the projection of all the cells in AN whose sign matrix

S is such that Si j = Sa
i j ∀ i, j ∈ χa.

This is an immediate consequence of (3) and (5).
Let �a and �b be the set of cells in AN that are projected on ζa and ζb, respectively

Lemma 3 The set �a ∩ �b is non empty iff ζa and ζb are compatible.

Suppose we have ξ ∈ �a but ξ �∈ �b, this means that the relative positions of the
set of indices χb\a = χb \ χa in the dominance sequence (4) is not the same as in
ζb, since the reflexion group of the arrangement is the symmetric group there always
will be a set of permutations/reflections that sorts the indices χb\a in the dominance
sequence in the same order as in ζb, this generates a cell ξ

′ ∈ �a ∩ �b.

3 The graph of cells

Lemmas 2 and 3 suggest that A3×N can be built by merging partitions of lower
dimensionality. The smallest 3D system is a set of 4 atoms, and A3×4−1, the partition
of its CS, has exactly 13,824 cells, a computational complexity within the range of a
desktop computer. Moreover, as stated in the introduction it can be reasonably assumed
that such small CS can be thoroughly scanned by a MDS.

Following the procedure proposed in Refs. [2–4] (outlined in the introduction) we
can build the CS of a molecular system from the CS of the simplexes. For this, we
need to construct the graph of cells or G which is defined as follows:

Definition 4 Two simplexes are adjacent if they share a face.

Definition 5 The nodes of G are the visited cells of each simplex with edges towards
the compatible cells of adjacent simplexes.
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Definition 6 A transversal is a subgraph of G with nodes exactly one cell from every
simplex such that every two cells from adjacent simplexes are compatible.

G embodies all the information contained in the CS of a molecular system since

Theorem 1 The cells in a transversal are the projections of a single cell in CS

By Lemma 3 the cells in the transversal are the projection of at least one cell in
A3×N , that cell is unique because if there were two, for instance, their sign matrices
would not be the same, say that the element Sc

i j is different, then there is a set of
(N−1

2

)
simplexes that harbor the indices i and j and within this set each simplex is

adjacent to 2 × (N − 3) other simplexes, from Definition 5 adjacent simplexes have
to be compatible and the element i j in their sign matrix must be the same for all,
invalidating our assumption.

Corollary In G a node that fails to form an edge with an adjacent simplex cannot
exist since it is geometrically inconsistent.

A useful structure derived from G is its compact form C obtained by recursively
substituting every contiguous set of n-dimensional nodes by their (n −1)-dimensional
separator cell.

Finally a cell from A3×N is a class in an equivalence relation, since it contains all
the 3D-structures that have the same dominance sequence. In what follows we use the
terms cell and 3D-structure interchangeably.

4 Determining a conical boundary for the molecular dynamics trajectory

G is a huge structure and it is probably useless to try to explore it in full, rather the
approach we take here is how to focus on regions (subgraphs) where we can expect
to extract useful information. We start with the problem of finding the bounds of
interesting regions, with a concrete example concerning a 2.1 ns pancreatic trypsin
inhibitor (PTI) [14] MDS that was fully described in [15].

As in [15] we restrict ourselves to study the motion of Cn
α carbons each bearing a

number n that reflects the linear order of residues along the polypeptide chain, as our
description of CS is strictly modular any conclusion that can be drawn on any subset
of atoms is automatically valid for the whole structure.

An information easily extracted from a MDS are the dominance relations matrices
DRc, where c stands for either x , y or z, each element of these matrices defines the
equation of a face in a polyhedral cone, it encloses the region that the molecular system
occupies in CS. The determination of the DRcs from the MDS [15] takes the following
steps:

• First, the simplex corresponding to the residue numbers Sr = {6, 36, 40, 47} was
selected as the reference simplex because all along the MDS it stays within one
morphological class, and because it spans a wide volume across the molecule.

• Second, the coordinates of Sr in the 1st MD frame were taken as a reference and
the other frames were rotated and translated so that the RMS between Sr (1) and
Sr ( f ) be a minimum [16].
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• Third, the quantities DRc
i j , 1 ≤ i < j ≤ N + 1, were determined

– DRc
i j = +, DRc

ji = − if Ci
αc

> C j
αc for all coordinate frames.

– DRc
i j = −, DRc

ji = + if Ci
αc

< C j
αc for all coordinate frames.

– DRc
i j = DRc

ji = 0 if neither of the above relations holds. Also, by convention
DRc

ii = 0.

The meaning of the matrix elements is obvious, if DRc
i j = +/− the trajectory always

stays on the positive/negative side of Hc
i j (2), for DRc

i j = 0 the trajectory can be on
either side of Hc

i j . The matrices for x , y and z for the MDS [15] are shown in Fig. 1,
the number of non-zero terms in the matrix is the dimension of the cone.
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Fig. 1 Antisymmetric dominance relations matrices for the Cα coordinates, only the upper triangle is
shown. For sake of clarity row and column amino acid numbers can be read from the annotated axes r and
c. A matrix element can have three values: +, xr > xc for all coordinate frames in the molecular dynamics
run; −, xr < xc for all coordinate frames in the molecular dynamics run; 0, neither of the above relations
holds
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Lemma 4 The minimum position minc
µ of a coordinate cµ is the number of matrix

elements DRc
µj = + plus 1, 1 ≤ j ≤ N , j �=µ, and the maximum position maxc

µ is
the minimum position plus the number of matrix elements DRc

µj = 0, 1 ≤ j ≤ N.

5 The fragmentation of the cone

The dominance relations matrices DRc encode a lot of information about the structure
of the volume occupied by the system in CS. They give us the range of positions of a
given coordinate in the dominance sequence (3).

The index µ in the dominance sequence must always stay to the right of the elements
it dominates if there are n+ of such elements the minimum position of µ is n+ + 1, on
the other hand be n0 the number of indifferent relations, µ can be either to the right
or to the left of any of these then the maximum position of µ must be n+ + n0 + 1.

We can also extract from DRc sets of lower dimensional cells, these are useful for
fragmenting G into subgraphs of more manageable size. To do this we can proceed as
follows: we select indices µ and ν such that

∀c ∈ {x, y, z} : maxc
µ > minc

ν, maxc
ν > minc

µ and

MIN(maxc
µ, maxc

ν) − MAX(minc
µ, minc

ν) ≥ hc (6)

with hc = 1, 2, 1 for DRc
µν = −1, 0, 1, respectively.

We thus select pairs of atomic indices µ and ν whose ranges overlap in x , y and
z simultaneously with intersection length ≥ (hx , hy, hz), respectively. For every pair
index their ranges in any dimension are divided into three segments: left, middle
(the intersection) and right; µ, for instance, can occupy any position in the left and
middle segments, while ν can be in the middle and right ones, this makes a total of 3
possibilities, 4 if DRc = 0 in which case µ and ν can be simultaneously in the middle
segment. Obviously this can be extended to more than 2 indices: if µν, µω and νω

have overlapping ranges, for instance, then there is a common overlapping range for
µ, ν and ω too, which in turn gives segmentation and occupation patterns for µνω.

The importance of overlapping indices is twofold:

1. A set of molecular conformational states can be determined from them using a
minimum number of cells from G: the indices being the same for x , y and z makes
that occupation patterns for overlapping µ and ν, for instance, can be deduced
from the cells in G corresponding to the simplexes that bear these indices.

2. One can address the basic problem of how occupation states in the dominance
sequence are correlated between different coordinates.

The set of allowed overlapping indices than can be deduced from the DRc matrices in
Fig. 1 is given in Table 1.

This allows a procedure for fragmenting the cone in Fig. 1 into smaller ones. From
G we can deduce for each set of indices from Table 1 a number of local conformations,
the valid combinations of these conformations will give us smaller cones whose cells
have D P Ss with mean positions (x, y, z) much closer to the values of the cells in G.
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Table 1 The complete sets of indices for the α-carbons of the MDS described in [15] that conform to (6)

 ( 1  2) ( 1  6) ( 1 56) ( 1 57) ( 1 58)
 ( 2  3) ( 2  4) ( 2  5) ( 3  4) ( 3  5)
 ( 3  6) ( 4  5) ( 4  6) ( 5  6) ( 6  7)
 ( 6 25) (10 11) (11 12) (11 35) (12 13)
 (12 39) (13 14) (14 15) (15 16) (16 17)
 (17 18) (18 19) (19 34) (20 46) (21 32)
 (21 45) (23 24) (24 25) (24 26) (24 27)
 (24 28) (25 26) (25 27) (25 28) (26 27)
 (26 28) (27 28) (27 29) (28 29) (28 57)
 (28 58) (29 57) (29 58) (33 34) (36 37)
 (37 38) (38 39) (39 40) (41 42) (44 45)
 (46 47) (48 49) (49 50) (52 53) (52 55)
 (52 58) (53 54) (53 55) (53 56) (53 57)
 (53 58) (54 55) (54 56) (54 57) (54 58)
 (55 56) (55 57) (55 58) (56 57) (56 58) (57 58)
 ( 1 56 57) ( 1 56 58) ( 1 57 58) ( 2  3  4) ( 2  3  5)
 ( 2  4  5) ( 3  4  5) ( 3  4  6) ( 3  5  6) ( 4  5  6)
 (24 25 26) (24 25 27) (24 25 28) (24 26 27) (24 26 28)
 (24 27 28) (25 26 27) (25 26 28) (25 27 28) (26 27 28)
 (27 28 29) (28 29 57) (28 29 58) (28 57 58) (29 57 58)
 (52 53 55) (52 53 58) (52 55 58) (53 54 55) (53 54 56)
 (53 54 57) (53 54 58) (53 55 56) (53 55 57) (53 55 58)
 (53 56 57) (53 56 58) (53 57 58) (54 55 56) (54 55 57)
 (54 55 58) (54 56 57) (54 56 58) (54 57 58) (55 56 57)
 (55 56 58) (55 57 58) (56 57 58)
 ( 1 56 57 58) ( 2  3  4  5) ( 3  4  5  6) (24 25 26 27) (24 25 26 28)
 (24 25 27 28) (24 26 27 28) (25 26 27 28) (28 29 57 58) (52 53 55 58)
 (53 54 55 56) (53 54 55 57) (53 54 55 58) (53 54 56 57) (53 54 56 58)
 (53 54 57 58) (53 55 56 57) (53 55 56 58) (53 55 57 58) (53 56 57 58)
 (54 55 56 57) (54 55 56 58) (54 55 57 58) (54 56 57 58) (55 56 57 58)
 (24 25 26 27 28) (53 54 55 56 57) (53 54 55 56 58) (53 54 55 57 58) (53 54 56 57 58)
 (53 55 56 57 58) (54 55 56 57 58)
.(53 54 55 56 57 58)

6 A combinatorial sequence for encoding cones

The codification of cones in conformational space could be much simplified by intro-
ducing a simple extension in the formalism used for encoding dominance sequences:
we allow expressions enclosed between parenthesis to overlap, and we distinguish
between pairs of enclosing parenthesis by numbering them. Let us assume, for exam-
ple, that we have a cone in CS with DR matrix

1 3 4 7 8 9
1 + + 0 0 0
3 − 0 − 0 0
4 − 0 − 0 0
7 0 + + 0 0
8 0 0 0 0 0
9 0 0 0 0 0

. (7)

The sequence

1

(3 4
2

(8 9
1

) 1 7
2

) (8)

is meant to encode in one formula the sequences (3 4 8 9)(1 7) and (3 4)(1 7 8 9),
these represent the totality of cells from CS that lie inside the cone (7); structures like
(8) will be designated as: generalized compact dominance sequences (GCDS). Notice
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that parenthesis enclosed within parenthesis are not allowed within GCDSs since they
are meaningless as dominance sequences.

GCDSs can encode huge numbers of cells from CS, for instance the first ten α-
carbons in our structure [14,15] evolve within a cone in A3×10 encoded by the formula

{{1

(1
2

(5 8
3

(6
1

)
4

(2
5

(9
2

) 7
3

) 10
4

) 3 4
5

)}x ,

{1

(10
1

)
2

(9
2

)
3

(8
3

)
4

(7
4

)
5

(5
6

(4
5

) 6
6

)
7

(2
8

(3
7

) 1
8

)}y,

{1

(8
2

(7 10
1

) 6 9
2

)
3

(3 4 5
4

(1
3

) 2
4

)}z} (9)

that can be easily checked by comparing it with the 10 × 10 upper-left submatrices in
Fig. 1.

Not all the cones in CS can be represented by GCDSs. A simple example will show
us that the x-component of (9) cannot be extended beyond the 14th Cα . Let

2 3 4 10 12 15
2 − − 0 − −
3 + 0 0 -© 0
4 + 0 0 -© 0

10 0 0 0 0 0
12 + +© +© 0 0
15 + 0 0 0 0

. (10)

be the DRx submatrix of the α-carbons 2, 3, 4, 10, 12 and 15, it gives the sequence

1

(2
2

(10
1

)
3

(3 4 15
3

) 12
2

) (11)

which is clearly inconsistent because 12 dominates 3 and 4 but is on the same domi-
nance level with 10. One can perform slight modifications in (10) that transform (11)
into a valid compact formula: setting to zero the circled components in (10) gives the
DRx matrix of a GCDS-cone that encloses the cone (10). This modification allows us
to extend the generalized dominance sequence x-component of (9) to the 20 α-carbons
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(12)

One can easily verify for every coordinate from Fig. 1 that the cone that bounds the
evolution in CS of every 10 consecutive residues of the molecular structure is a GCDS-
cone, for chains about 20 residues and more this is generally no longer possible unless
the value of some DRc elements are made zero as in (10). This result would seem to
suggest that in the MDS from [15] thermodynamic equilibrium has not been attained,
for instance in (10) Cx

α10
can swap dominance with Cx

α3
, Cx

α4
, Cx

α7
and Cx

α15
, but pairs of

cells with conformations where Cx
α3

, Cx
α4

and Cx
α7

cross one another on the x-axis have
not been visited by the MDS. This example clearly shows that GCDS-cones not only
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have a simple elegant formula to describe them but also they maximize the number
of available states (i.e. entropy), both properties make them very convenient tools for
studying CS.

By setting to zero a minimum number of DRcs: 27 in x , 6 in y and 91 in z (1.9%,
0.4% and 6.6%, respectively). We obtain a GCDS-cone for the whole α-carbon chain
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This sequence sets the boundary for the molecular dynamics trajectory in [15] in a
compact form.6

7 Conclusion

This paper is an outline of a methodology for the exploration of CS.
In [1–4] it was assumed that the small local movements of a molecule can be

thoroughly sampled in a MDS, and a procedure was devised for building the whole set
of structures that result from the combinations of these small movements. The result
is a combinatorial structure called the graph of cells, that gives a global view of a
molecular system dynamical conformations.

Although the graph of cells can be fitted in a desktop computer file it encodes a
huge amount of structures, the present paper is a first step in solving the problem of
managing this great quantity of information. Three issues have been addressed:

1. we can give bounds that delimit interesting regions (cones) in CS,
2. these cones can be decomposed into a set of smaller ones,
3. it is shown that cones in CS can be described by a combinatorial sequence

This last structure, the generalized compact dominance sequence, has embedded in it
the whole set of dominance sequences that are in a cone, and can be hierarchically

6 α-carbons from end-residues 1, 2, 56, 57 and 58 are not included because they add disorder, unnecessarily
augmenting the volume of the cone without adding much information.
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decomposed into a poset structure. On the other hand the graph of cells can be seen
as a set of constraints between the x , y and z components of the allowed dominance
sequences, then the GCDSs and the graph of cells complement each other beautifully,
since the conformations of the molecular system can obtained by pruning the poset
structure from the GCDS with the constraints from the graph of cells. Moreover,
GCDSs also have a graphical structure where paths and graphical distances between
cells (or 3D-structures) can be determined, and graphical distances between atoms
in a 3D-structure can be enumerated as well. That makes GCDSs well suited as the
base structures for the development of a combinatorial Hamiltonian in conformational
space.

These issues will be further explored in forthcoming works of this series.
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